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Abstract
The effects of non-locality on the focusing properties of a thin metal slab, with
the real part of the permittivity equal to −1, are evaluated. Non-local effects
are introduced by employing the wavenumber-dependent plasmon energy of
the hydrodynamic model. Non-locality affects the dispersion of the surface
plasmons, the transmissivity of the slab, and hence also its imaging ability. The
results of numerical calculations for silver slabs are presented.

1. Introduction

It has been predicted by Veselago [1] that a slab with permittivity and permeability given
by ε = −1 and µ = −1, respectively, would act as a lens. Pendry [2] has shown that the
resolution of such a lens is not limited by the classical diffraction limit. This remarkable
property of the negative index material lens is due to its ability to amplify the evanescent near-
field components of the source, which describe the finest details of the object. Furthermore,
for thin enough films, for which the electrostatic approximation applies, near-field focusing of
p polarized fields might be achieved even when only the condition ε = −1 is satisfied [2]. For
this purpose silver seems to be the most promising material in the optical range. Following
this idea, a number of investigations of the imaging properties of negative permittivity slabs in
general [3–5], and of thin silver films in particular [2, 6–9], have been performed, and potential
applications to sub-wavelength optical lithography have been suggested [10, 11].

The ability of the lens to amplify evanescent waves is related to the presence of surface
plasmon modes [2]. In all theoretical discussions of these effects, the surface modes were
assumed to be dispersionless in the large k limit, where k is the wavevector component parallel
to the surface. However, due to non-local effects (also called spatial dispersion effects) there
occurs a k dependence of the modes at large k. A simple way of including these non-local
effects is to employ the hydrodynamic model, as will be done in the calculations presented
here. In this model the dispersion of the bulk plasmons is given by [12]

ω2(q) = ω2
p + β2q2 (1)

where ωp is the plasma frequency, q is the wavenumber and β2 = 3
5v2

F, where vF is the Fermi
velocity. The application of the hydrodynamic model to the calculation of optical properties
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and surface plasmon dispersion has been reviewed in [13, 14]. The Fresnel equations for the
reflection and transmission of an incident electromagnetic plane wave, which were developed
for a local medium, have to be modified when dealing with a non-local medium, so as to allow
for the direct optical excitation of longitudinal plasmon modes, as pointed out by Sauter [15].
Melnyk and Harrison [16] have calculated the optical properties of a non-local metal. They
have found that for a semi-infinite medium the influence of non-locality on the reflectivity is
hardly discernible. However, for films with thickness of the order of d = 10 nm or less, the
absorption, reflection and transmission spectra differ perceptibly from those derived from the
local theory. The main effect arising from non-locality was the excitation of standing bulk
plasma waves inside the thin films. These manifest themselves in the optical spectra as a
series of subsidiary peaks in the frequency region ω > ωp. These predictions were confirmed
experimentally in optical experiments in which thin potassium [17] and silver [18, 19] films
have been used. In imaging applications of Ag films, the typical thickness is of the order
of d = 40 nm. This value of d is large enough so that the effects of non-locality on direct
optical properties, such as reflection or transmission spectra, would be negligible. However,
as will be shown in section 2, the slab surface plasmons of the non-local model are dispersive
at large wavevectors. These large wavevector modes are involved in the amplification of the
evanescent components of the source field. Thus their dispersion may influence the imaging
capability of the thin film lens, and in section 3 we investigate this effect in detail.

2. Surface polaritons of non-local material

2.1. Semi-infinite medium

We assume that the non-local material occupies the z > 0 half-space, and that the medium at
z < 0 has a frequency-independent dielectric constant ε1. For the case of p polarization, and
assuming a e−iωt time dependence, the fields in the region z < 0 can be written in the form

�H (1) = ây Aeαzeikx (2)

�E (1) = − c

ωε1
A(iαâx + kâz)e

αzeikx (3)

where âx, ây, âz are unit vectors in the x , y and z directions, respectively, and

α =
(

k2 − ε1
ω2

c2

)1/2

. (4)

The transverse fields in the region z > 0 are given by

�H (2)
T = ây Be−δzeikx (5)

�E (2)
T = c

ωε(ω)
B(iδâx − kâz)e−δzeikx (6)

where

δ =
(

k2 − ε(ω)
ω2

c2

)1/2

(7)

and ε(ω) is the transverse dielectric function of the metal, for which the local approximation
can be used, as discussed by Fuchs and Kliewer [20].

For the longitudinal fields in the region z > 0 we use the form

�E (2)
L = D

(
âx + i

γ

k
âz

)
e−γ zeikx (8)
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Figure 1. Dispersion curve of a surface plasmon–polariton at the interface between a semi-
infinite metallic medium and vacuum. Full curve: non-local calculation; broken curve: local
approximation.

where, for the hydrodynamic model,

γ = [k2 + (ω2
p − ω2)/β2]1/2. (9)

Since we are allowing for the existence of longitudinal modes, the usual boundary conditions
of the continuity of the tangential components of the fields at z = 0 have to be augmented by
an additional boundary condition. Melnyk and Harrison [16] have shown that the appropriate
boundary condition is the continuity of the normal component of the displacement current,
which implies the continuity of Ez. The three boundary conditions yield a system of three linear
homogeneous equations for the coefficients A, B and D. Equating to zero the determinant of
this system yields the surface polariton dispersion relation:

k2[ε1 − ε(ω)] = γ [αε(ω) + δε1]. (10)

For ε1 = 1 this is equivalent to the result derived by Sturm [21]. The dispersion relation (10)
is shown by the full curve of figure 1. For this calculation the form

ε(ω) = 1 − ω2
p

ω2
(11)

was used and the value ε1 = 1 was employed. The parallel component of the wavenumber
is given in units of kp = ωp/c and the frequency in units of ωp. In this dimensionless
representation, the only parameter of the non-local medium which has to be specified is the ratio
vF/c, for which the typical value of 1/200 was employed. The standard dispersion relation,
obtained from local theory, is

αε(ω) + βε1 = 0 (12)

and this is shown by the broken curve of figure 1. It can be seen that for large k the broken curve
approaches the frequency ωS, defined by ε(ωS) = −ε1, which yields the value ωS = ωp/

√
2.

The non-local dispersion curve increases linearly at large k. The rate of this increase can be
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evaluated by taking the non-retarded limit of equation (10) and expanding to first order in k,
yielding

ω

ωp
= 1√

2

[
1 +

(
3

10

)1/2
vFk

ωp

]
(13)

which is the known electrostatic surface plasmon dispersion relation of the hydrodynamic
model [20, 22].

2.2. Slab

We assume that the non-local material occupies the region 0 < z < d , and that the medium
outside the slab has a frequency-independent dielectric constant ε1. For the case of p
polarization, the fields in the region z < 0 can be written in the form

�H (1) = ây Aeαzeikx (14)

�E (1) = − c

ωε1
A(iαâx + kâz)eαzeikx . (15)

The transverse fields inside the slab are given by

�H (2) = ây(Beδz + De−δz)eikx (16)

�E (2)
T = c

ωε(ω)
[−B(iδâx + kâz)eδz + D(iδâx − kâz)e−δz]eikx (17)

and the longitudinal field is

Ê (2)
L =

[
F

(
âx − i

γ

k
âz

)
eγ z + G

(
âx + i

γ

k
âz

)
e−γ z

]
eikx . (18)

The fields in the region z > 0 are written in the form

�H (3) = ây K e−αzeikx (19)

�E (3) = c

ωε1
K (iαâx − kâz)e−αzeikx . (20)

Applying the boundary conditions of the continuity of Hy, Ex and Ez at z = 0 and d yields a
system of six homogeneous linear equations for the six coefficients A, B , D, F , G, K . The
resulting dispersion relation is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 −1 0 0 0

− αc
ωε1

δc
ωε(ω)

− δc
ωε(ω)

1 1 0
kc
ωε1

− kc
ωε(ω)

− kc
ωε(ω)

− γ

k
γ

k 0

0 eδd e−δd 0 0 −1

0 δc
ωε(ω)

eδd − δc
ωε(ω)

e−δd eγ d e−γ d αc
ωε1

0 kc
ωε(ω)

eδd kc
ωε(ω)

e−δd γ

k eγ d − γ

k e−γ d − kc
ωε1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (21)

As in the local case, there exist two surface polariton branches, resulting from the interaction
of the surface modes localized near the two surfaces of the slab. The dispersion curves of the
surface plasmon–polaritons, as calculated from (21), are shown in figure 2. The slab thickness
d is given by kpd = 0.5, and again we assume that vF/c = 1/200. The dispersion curves
obtained from the local theory are also shown. These were calculated from the equations

ε(ω) = − δ

α
tanh(δd/2) (22)
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Figure 2. Dispersion curves of surface plasmon–polaritons of a metal slab of thickness kpd = 0.5
in vacuum. Full curve: non-local calculation; broken curve: local approximation.

and

ε(ω) = − δ

α
coth(δd/2) (23)

for the high and low branch, respectively [23]. While for small k the local and non-local modes
overlap, as k increases the non-local curves are always higher than the corresponding local
ones. In the large k limit the broken curves approach the limiting value of ω/ωp = 1/

√
2,

while the full curves increase linearly with k, according to the rule (13).

3. Near field imaging

We now calculate the focusing properties of a thin silver slab. For a slab of thickness d the
object plane and the image plane are located at distances of d/2 from the two surfaces of the
slab. Thus, for the geometry of section 2.2 the object plane is at z = −d/2, and the image
plane is at z = 3d/2. The source fields are expanded in a Fourier integral. Restricting the field
variation to one transverse direction (no y dependence) this expansion has the form

�E(k) = 1√
2π

∫ ∞

−∞
�E
(

x, z = −d

2

)
e−ikx dx . (24)

Here, as in section 2, k denotes the x component of the wavevector. The z dependence of the
fields is given by exp(ikzz), where k2

z = ε1(ω/c)2 − k2. The field emanating from the source
will include both propagating modes, with real kz , and evanescent modes, with imaginary kz .
The latter occur when k2 > ε1(ω/c)2, i.e., for the higher Fourier components, which describe
the finer details of the object. For each Fourier component the field at the image plane is
calculated, and the image is obtained by the inverse transform

�E
(

x, z = 3d

2

)
= 1√

2π

∫ ∞

−∞
�E(k)T (k)e2ikz d eikx dk (25)
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Figure 3. Field intensity at the image plane for a silver film of thickness d = 40 nm. Full curve:
non-local calculation; broken curve: local approximation. The vertical broken lines show the
position of the object.

where T (k) is the transmission coefficient of the slab. For the local case the classical formulae
for the transmission [2] are employed. For the non-local case the method of calculation is
similar to that presented in section 2, except that now an incident field has to be added. Explicit
formulae for the transmission coefficient for this case have been presented by Melnyk and
Harrison [16]. For the object field we assume a double spike structure of unity amplitude. The
two spikes have a width of 20 nm and are separated by a distance of 100 nm. The calculations
are performed for h̄ω = 3.68 eV. Now we do not use the free electron like form (11) of the
dielectric constant, but employ the experimentally measured value of the dielectric constant of
silver at this frequency, ε = −1 + 0.3i [24]. We also add a damping term to the longitudinal
modes, using the experimental value of the damping frequency [18]. The results for a slab of
thickness 40 nm are shown in figure 3. The image obtained from the full non-local calculation
is somewhat better than that derived from the local theory: the images of the spikes are slightly
higher, while the unwanted side lobes are reduced in amplitude. The difference between the
two approaches becomes even more perceptible for d = 50 nm, as shown in figure 4. At this
thickness the image derived from the local theory has deteriorated due to retardation effects,
while the one obtained from the non-local calculation is still useful.

4. Discussion

We have investigated the influence of non-locality on the near field lens made of a metallic slab
having a negative permittivity. The non-local properties of the slab material were characterized
by the hydrodynamic model. Using this model, we have calculated the surface plasmon
dispersion curves and found that for large wavevectors they deviate from the corresponding
curves of the local model. Whereas in the local case the curves become dispersionless at
large wavevectors, in the non-local case the frequency increases linearly with the wavevector.
The effect of this dispersion on the imaging properties of a silver slab has been evaluated.
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Figure 4. Field intensity at the image plane for a silver film of thickness d = 50 nm. Full curve:
non-local calculation; broken curve: local approximation. The vertical broken lines show the
position of the object.

For a silver slab thickness of the order of 40 nm, which is the size typically considered for
applications [10], the image quality is slightly better when non-local effects are taken into
account. This we attribute to the slight upward shift of the lower surface plasmon branch (see
figure 2), which brings it into better overlap with the ε(ω) = −1 line in the k range of interest.

In the treatment presented here the changes in the electron density near the slab surfaces
have been neglected. The implicit assumption is that the electron density changes abruptly
from its bulk value to zero. The effects of a non-abruptly decreasing electron density can
be incorporated into the hydrodynamic model by assuming that in a thin surface layer the
electron density differs from its bulk value [25, 26]. A more accurate description of both the
ground state electronic properties in the surface region and the non-local response of surface
electrons to incident electromagnetic fields is provided by the density functional method [27].
Whatever method is used, when a non-abrupt electron density profile is incorporated, it is
usually found that the surface plasmon frequency shifts downwards for small k, and only after
reaching a minimum it begins to rise. This type of dispersion was also observed experimentally
on, for example, K, Na, Cs, Al, Mg [27]. Future refinements of the present approach
should take the non-abrupt density profile into account. For silver, further complications,
due to s–d hybridization, occur. When these were incorporated into the density functional
calculations [28, 29], it was found that the dispersion of the surface plasmon of Ag is positive,
even at small wavevectors, as also observed experimentally [30]. Thus, the trend of the silver
surface plasmon dispersion agrees fortuitously with that obtained from the model employed
here. This implies that the modifications which will result form inclusion of a non-abrupt
density profile will be relatively small for silver.
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